Search results for "nutrients removal"
showing 8 items of 8 documents
The role of extracellular polymeric substances on aerobic granulation with stepwise increase of salinity
2018
Abstract A granular sequencing batch reactor (GSBR) worked for 164 days to study the effect of salinity on aerobic granulation. The feeding had an organic loading rate (OLR) of 1.6 kg COD⋅m −3 ⋅d −1 and a gradual increase of salinity (from 0.30 to 38 g NaCl − ⋅L −1 ) to promote a biological salt-adaptation. First aggregates (average diameter ≈ 0.4 mm) appeared after 14 days. Extracellular polymeric substances (EPSs) analyses revealed that proteins were mainly higher than polysaccharides, and microorganisms metabolized EPSs as additional carbon source, mostly in feast phase, to face the energy demand for salinity adaptation. No significant worsening of organic matter removal was observed. Th…
The influence of solid retention time on IFAS-MBR systems: analysis of system behavior.
2018
A University of Cape Town Integrated Fixed-Film Activated Sludge Membrane Bioreactor (UCT-IFAS-MBR) pilot plant was operated at different values of the sludge retention time (SRT). Three SRTs were investigated at different durations: indefinitely, 30 and 15 days. The organic carbon, nitrogen and phosphorus removal, kinetic/stoichiometric parameters, membrane fouling tendency and sludge filtration properties were assessed. The findings showed that by decreasing the SRT, the pilot plant could maintain excellent carbon removal efficiencies throughout the experiments. In contrast, the biological carbon removal showed a slight nitrification and was slightly affected by the decrease of the SRT, s…
Removal of carbon and nutrients from wastewater in a moving bed membrane biofilm reactor: the influence of the sludge retention time
2016
A University of Cape Town (UCT) pilot plant combining both membrane bioreactor (MBR) and moving bed biofilm reactor (MBBR) technology was monitored. Three experimental Phases were carried out by varying the mixed liquor sludge retention time (SRT) (indefinite, 30 and 15 days, respectively). The system performance has been investigated during experiments in terms of: organic carbon, nitrogen and phosphorus removal, biokinetic/stoichiometric constants, membrane fouling tendency and sludge dewaterability. The observed results showed that by decreasing the SRT the UCT pilot plant was able to maintain very high total COD removal efficiencies, whilst the biological COD removal efficiency showed a…
Mathematical Modelling of In-sewer Processes as a Tool for Sewer System Design
2018
The objective of this paper is to evaluate the potential impact of in-sewer processes (COD components transformation and hydrogen sulphide production) on the design of sewer systems. The tool used for such analysis is a mathematical model derived from the WATS model (Wastewater Aerobic/anaerobic Transformation in Sewers) able to describe the processes occurring in the sewer system both under aerobic and anaerobic conditions. The model is applied to three synthetic catchments with, respectively, 10,000, 50,000 and 250,000 inhabitants connected to gravity sewer systems different in terms of type (separate or combined), slope, length, travel time, wastewater temperature. The simulation results…
Kinetic modeling of autotrophic microalgae mainline processes for sewage treatment in phosphorus-replete and -deplete culture conditions
2021
[EN] A kinetic model of autotrophic microalgal growth in sewage was developed to determine the biokinetic processes involved, including carbon-, nitrogen- and phosphorus-limited microalgal growth, dependence on light intensity, temperature and pH, light attenuation and gas exchange to the atmosphere. A new feature was the differentiation between two metabolic pathways of phosphorus consumption according to the availability of extracellular phosphorus. Two scenarios were differentiated: phosphorus-replete and -deplete culture conditions. In the former, the microalgae absorbed phosphorus to grow and store polyphosphate. In the latter the microalgae used the stored polyphosphate as a phosphoru…
Simultaneous sludge minimization, biological phosphorous removal and membrane fouling mitigation in a novel plant layout for MBR.
2020
Abstract The integration of one anaerobic reactor in the mainstream (AMSR) of a pre-denitritication-MBR was evaluated with the aim to achieve simultaneous sludge minimization and phosphorous removal. The excess sludge production was reduced by 64% when the AMSR was operated under 8 h of hydraulic retention time (HRT). The highest nutrients removal performances referred to organic carbon (98%), nitrogen (90%) and phosphorous (97%) were obtained under 8 h of HRT. In contrast, prolonged anaerobic-endogenous conditions were found to be detrimental for all nutrients removal performances. Similarly, the lowest membrane fouling tendency (FR = 0.65∙1011 m−1 d−1) was achieved under 8 h of HRT, where…
Bacterial community structure and removal performances in IFAS-MBRs: A pilot plant case study
2017
Abstract The paper reports the results of an experimental campaign carried out on a University of Cape Town (UCT) integrated fixed-film activated sludge (IFAS) membrane bioreactor (MBR) pilot plant. The pilot plant was analysed in terms of chemical oxygen demand (COD) and nutrients removal, kinetic/stoichiometric parameters, membrane fouling and sludge dewaterability. Moreover, the cultivable bacterial community structure was also analysed. The pilot plant showed excellent COD removal efficiency throughout experiments, with average value higher than 98%, despite the slight variations of the influent wastewater. The achieved nitrification efficiency was close to 98% for most of the experimen…
Insights on mechanisms of excess sludge minimization in an oxic-settling-anaerobic process under different operating conditions and plant configurati…
2022
In the present research, insights about the mechanisms of excess sludge minimization occurring in an oxic-settling-anaerobic (OSA) were provided. The investigation involved two systems operating in parallel. In particular, a conventional activated sludge (CAS) system as control and a system implementing the OSA process both having a pre-denitrification scheme were considered. Five periods (P1-P5) were studied, during which several operating conditions and configurations were tested. Specifically, the hydraulic retention time (HRT) in the anaerobic reactor of the OSA system (P1 8 h, P2-P3 12 h, P4 8 h, P5 12 h) and the return sludge from the anaerobic to the anoxic (scheme A) (P1-P2) or aero…